Strategies for Extending Metabolomics Studies with Stable Isotope Labelling and Fluxomics
نویسندگان
چکیده
This is a perspective from the peer session on stable isotope labelling and fluxomics at the Australian & New Zealand Metabolomics Conference (ANZMET) held from 30 March to 1 April 2016 at La Trobe University, Melbourne, Australia. This report summarizes the key points raised in the peer session which focused on the advantages of using stable isotopes in modern metabolomics and the challenges in conducting flux analyses. The session highlighted the utility of stable isotope labelling in generating reference standards for metabolite identification, absolute quantification, and in the measurement of the dynamic activity of metabolic pathways. The advantages and disadvantages of different approaches of fluxomics analyses including flux balance analysis, metabolic flux analysis and kinetic flux profiling were also discussed along with the use of stable isotope labelling in in vivo dynamic metabolomics. A number of crucial technical considerations for designing experiments and analyzing data with stable isotope labelling were discussed which included replication, instrumentation, methods of labelling, tracer dilution and data analysis. This report reflects the current viewpoint on the use of stable isotope labelling in metabolomics experiments, identifying it as a great tool with the potential to improve biological interpretation of metabolomics data in a number of ways.
منابع مشابه
Positional Enrichment by Proton Analysis (PEPA): A One‐Dimensional 1H‐NMR Approach for 13C Stable Isotope Tracer Studies in Metabolomics
A novel metabolomics approach for NMR-based stable isotope tracer studies called PEPA is presented, and its performance validated using human cancer cells. PEPA detects the position of carbon label in isotopically enriched metabolites and quantifies fractional enrichment by indirect determination of 13 C-satellite peaks using 1D-1 H-NMR spectra. In comparison with 13 C-NMR, TOCSY and HSQC, PEPA...
متن کاملTandem Mass Spectrometry: A New Platform for Fluxomi
Copyright: © 2012 Peng L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Recent advances in various ‘omics’ technologies enable quantitative monitoring of the biological states of an organism in a highthrough...
متن کاملmzMatch–ISO: an R tool for the annotation and relative quantification of isotope-labelled mass spectrometry data
MOTIVATION Stable isotope-labelling experiments have recently gained increasing popularity in metabolomics studies, providing unique insights into the dynamics of metabolic fluxes, beyond the steady-state information gathered by routine mass spectrometry. However, most liquid chromatography-mass spectrometry data analysis software lacks features that enable automated annotation and relative qua...
متن کاملStage-Specific Changes in Plasmodium Metabolism Required for Differentiation and Adaptation to Different Host and Vector Environments
Malaria parasites (Plasmodium spp.) encounter markedly different (nutritional) environments during their complex life cycles in the mosquito and human hosts. Adaptation to these different host niches is associated with a dramatic rewiring of metabolism, from a highly glycolytic metabolism in the asexual blood stages to increased dependence on tricarboxylic acid (TCA) metabolism in mosquito stag...
متن کاملC-based metabolomics and fluxomics
Photosynthesis is the process to convert solar energy to biomass and biofuels, which are the only major solar energy storage means on Earth. To satisfy the increased demand for sustainable energy sources, it is essential to understand the process of solar energy storage, that is, the carbon metabolism in photosynthetic organisms. It has been well-recognized that one bottleneck of photosynthesis...
متن کامل